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ABSTRACT
Motivation: Network inference algorithms are powerful com-
putational tools for identifying putative causal interactions
among variables from observational data. Bayesian network
inference algorithms hold particular promise in that they can
capture linear, non-linear, combinatorial, stochastic and other
types of relationships among variables across multiple levels
of biological organization. However, challenges remain when
applying these algorithms to limited quantities of experimental
data collected from biological systems. Here, we use a sim-
ulation approach to make advances in our dynamic Bayesian
network (DBN) inference algorithm, especially in the context
of limited quantities of biological data.
Results: We test a range of scoring metrics and search
heuristics to find an effective algorithm configuration for evalu-
ating our methodological advances. We also identify sampling
intervals and levels of data discretization that allow the best
recovery of the simulated networks. We develop a novel influ-
ence score for DBNs that attempts to estimate both the sign
(activation or repression) and relative magnitude of interac-
tions among variables. When faced with limited quantities
of observational data, combining our influence score with
moderate data interpolation reduces a significant portion of
false positive interactions in the recovered networks. Together,
our advances allow DBN inference algorithms to be more
effective in recovering biological networks from experimentally
collected data.
Availability: Source code and simulated data are available
upon request.
Contact: yu@ee.duke.edu; amink@cs.duke.edu; jarvis@
neuro.duke.edu
Supplementary information: http://www.jarvislab.net/
Bioinformatics/BNAdvances/

∗To whom correspondence should be addressed.

1 INTRODUCTION
A variety of network inference algorithms have recently been
used to identify gene regulatory networks from observational
gene expression data (Akutsuet al., 2000; Arkinet al., 1997;
D’haeseleeret al., 1999; Friedmanet al., 2000; Gardneret al.,
2003; Harteminket al., 2001; Lianget al., 1998; Weaveret al.,
1999; Xu et al., 2002). Bayesian network (BN) inference
algorithms have shown particular promise (Harteminket al.,
2002; Husmeier, 2003; Smithet al., 2002, 2003), because
unlike most other modeling frameworks, they can capture
many types of relationships between variables. Owing to their
probabilistic nature, BN algorithms are also capable of hand-
ling noisy data as found in biological experiments. They can
effectively handle hundreds of variables (Friedmanet al.,
2000; Smithet al., 2002). While a static BN is restricted
to be acyclic, a dynamic Bayesian network (DBN) can be
used to infer cyclic phenomena such as feedback loops that
are prevalent in biological systems. DBN algorithms can also
infer direction of causality because they incorporate temporal
information (Friedmanet al., 1998; Smithet al., 2002, 2003).

However, there remain limitations in using discrete BN
inference algorithms to analyze gene expression data. First, it
is well known that inference algorithms perform better with
larger quantities of data—and BN algorithms are no exception
(Heckerman, 1996)—but in molecular biology the quantity of
data that can be collected is often limited. Second, discrete
BNs typically use combinatorial interaction models, making
it difficult to determine the sign (+/−) and relative mag-
nitude of interactions between variables. Although continuous
BNs (Imoto et al., 2002) typically use additive interaction
models, making it easy to deduce the sign and relative mag-
nitude of interactions between variables, interactions between
transcriptional regulators are known to often be combinatorial
rather than additive.

Recently, we developed an approach to evaluate
and advance the performance of inference algorithms
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(Jarviset al., 2002; Smithet al., 2002; also see Wesselset al.,
2001; Zaket al., 2001). This approach involves applying net-
work inference algorithms to data sampled from a biologically
plausible simulator, and evaluating accuracy of the algorithms
by comparing the recovered networks to the original networks
used by the simulator. The simulator does not need to be an
exact match to, or model all features of, a real transcriptional
regulatory network, so long as it captures many of the import-
ant biological features. As with any model, the simulator is
an approximation of a real system, making certain simplify-
ing assumptions; these assumptions still allow for sufficient
complexity in the simulator so as to exhibit the qualitative
phenomena that are present in real systems. A simulation
approach is necessary to assess the accuracy of our algorithms,
given how little is known about real transcriptional regulatory
systems. Our approach has been successfully used to evaluate
algorithm performance on different network topologies and
data sampling schemes (Husmeier, 2003; Smithet al., 2003).

Here, we apply this simulation framework to evaluate
and improve the ability of DBN inference algorithms to
recover networks when faced with limited data. We cre-
ate an influence score for BN interactions that attempts to
estimate regulatory signs and magnitudes in the recovered
networks. We find that the influence score can also be
used to prune away false positive links in the recovered
networks. We determine that moderate data interpola-
tion is successful at further reducing false positives when
the data are limited. These advances work well on
multiple datasets from a variety of different network topo-
logies, including those with feedback loops and inde-
pendent regulatory pathways, and thus offer promise for
recovering meaningful models of biological systems from
limited data.

2 METHODS
2.1 The simulator: GeneSim
GeneSim, written in Matlab, models genetic regulatory path-
ways of arbitrary network structure and produces values for
gene expression levels at discrete time-steps. Values are pro-
duced by a combination of two processes. First, values at each
time step are updated by a simple stochastic process:

Yt+1 − Yt = f (Yt ) = A(Yt − T ) + ε,

whereYt is a vector representing the expression levels of all
genes at timet . Second, expression levels are restricted by a
floor and ceiling function to range from 0 to 100 (arbitrary
units). Expression levels are initialized to random values uni-
formly sampled from this range. The matrixA represents the
regulatory interactions in the simulated network. The mag-
nitude of each entry ofA describes the strength of regulation
that a regulator gene exerts upon a target gene; the sign indic-
ates the type of regulation, with positive values indicating

activation and negative values indicating repression. The vec-
torT representsconstitutive expression values for each gene; a
regulator gene exerts an influence on its target gene only to the
extent that it differs from its constitutive value (in this study, all
constitutive values are set to 50, the median value between the
maximum and minimum). If the regulator gene is present at
a level above its constitutive value, then the regulatory effect
on its target genes occurs as specified inA; the higher the
regulator’s level, the stronger the specified effect on its target
genes. In contrast, if the regulator gene is present at a level
below its constitutive value, then its effect is in the oppos-
ite direction of that specified inA; the lower the regulator’s
level, the stronger the opposite effect on its target genes. This
latter property acts a constant rate (AT), which is intended to
capture basic processes that are not explicitly modeled, such
as mRNA degradation or release from repression, that act to
return the target gene to its constitutive expression level. Our
framework also allows for concentration-dependent degrada-
tion or autoregulatory effects to be modeled as elements along
the diagonal in A; however, we did not do so here. Theε term
models inherent biological noise and is drawn uniformly at
random from the range−10 to 10. If a gene has no regulator
(the corresponding row inA is all zeros), then it will move in
a random walk, with steps taken according to the values ofε.
This entire process of updates is bounded by the floor and ceil-
ing values to prevent the concentration of an mRNA species
from becoming negative or growing unbounded. The floor and
ceiling values also introduce non-linearity near the bound-
aries of the expression range, resulting in expression value
response curves that are approximately sigmoid, as is com-
monly found in concentration–response profiles of mRNA
synthesis in real biological systems (Broccardoet al., 2004;
Ferrariet al., 2004).

As the simulation runs, the data are sampled in pre-specified
intervals, and the samples are exported to a text file. For
example, if we collect data every five time-steps, the sampling
interval is five and the sampled output is the series of expres-
sion level vectors (Y0,Y5,Y10, . . .), analogous to data gathered
in a microarray time course experiment.

We use GeneSim to simulate 10 different randomly gener-
ated genetic regulatory networks. Each of the networks has 20
genes; 8–12 of these genes have regulatory interactions with
at least one other gene; the remainder move in a random walk
and thus serve as distracters for the inference algorithm (Fig. 1
and Supplemental Figure 1). For every link (also known as an
edge or arc), we randomly assign the regulation strength to
have one of four possible values, 0.05, 0.1, 0.15 or 0.2, with
a randomly assigned sign (+/−). A total of 100 links are
present across all 10 networks, 60 of which are one-parent
links (they point to a gene only having one regulator), 34 are
two-parent links, and six are three-parent links (Supplemental
Table 1). For each of the experiments in Section 3, data from
each of the 10 networks are sampled in 10 independent runs of
the simulator, creating 10 independent datasets per network.
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Fig. 1. Two examples from the set of ten networks simulated by
GeneSim to produce data sets. In Network 1, there are two inde-
pendent regulatory pathways, one of which includes a large feedback
structure, while in Network 2, there are three parents for one
gene. Numbers next to links specify regulation strengths; arrows:
activation; flat heads: repression. All ten networks are shown in
Supplemental Figure 1.

The DBN inference algorithm is applied separately to each
of these datasets (10 networks, 10 datasets each) to obtain an
average recovery performance for each experiment.

2.2 The network inference algorithm
Our DBN inference algorithm is written in C++ and is
designed to search for high-scoring networks that describe
probabilistic relationships between discrete variables. There
are no additional assumptions added to the algorithm, such as
linearity or non-linearity of the data. Every node in the DBN
network represents a single variable, here one gene. Every
directed link between two nodes represents a conditional stat-
istical dependence of the child node on the parent node, here
a regulatory relationship in which the parent gene regulates
the child gene at a later time. We use a first-order Markov
DBN where every variable at a given time point is influenced
by itself and its parents in the immediate previous time point.
Markov equivalence class ambiguity does not arise because
DBNs use temporal information to unambiguously determine
the direction of links between nodes. We compute a score
for each networkG, using a scoring metric that evaluates
how probable it is that the network explains relationships in
the observed dataD. We use search heuristics to identify the
network with highest score (top network).

Bayesian scoring metrics. We compare two scoring met-
rics: the BDe (Bayesian Dirichlet equivalence) and the BIC
(Bayesian information criterion), as described by Heckerman
(1996). Both scoring metrics incorporate a penalty for com-
plexity to guard against over-fitting of data. The BDe score is
based on the full Bayesian posterior probabilityP(G|D) and
has an inherent penalty for complexity since it computes the
marginal likelihoodP(D|G) by integrating the probability of
the data over all possible parameter assignments toG. The
BIC score is an asymptotic approximation to the BDe score
that uses an explicitly penalized estimate of the likelihood.

Search heuristics. We chose to compare three search
methods that are distinct in their underlying principles:
(1) greedy search with many random restarts, (2) simulated

annealing and (3) a genetic algorithm. Because greedy search
can easily become trapped in local optima, it has no theoret-
ical convergence guarantees, but with many random restarts
it has been observed to work well. Simulated annealing is a
variant of Metropolis Hastings that has a convergence guar-
antee, but only under strict conditions. Genetic algorithms do
not have a similar theoretical underpinning, but are inspired
by an evolutionary perspective and have been observed in
certain instances to find good solutions in large spaces. For
greedy search, in each step we consider every possible local
change and choose the one that improves the score the most;
we use 100 random restarts to escape from local score max-
ima. Thus, the greedy search method we use does not have
problems due to order of link selection. For simulated anneal-
ing and the genetic algorithm, we start with empty networks
(i.e. no links).

The greedy search and simulated annealing algorithm
frameworks are described by Heckerman (1996). We are not
aware of a genetic algorithm being described for BN search,
and thus explain the operations we chose to implement. A
genetic algorithm (GA) (Goldberg, 1989) is a search heuristic
that modifies a population of candidate networks using three
operators:mutation, which produces an isolated change in one
network, helping to escape local maxima;crossover, which
swaps parts of two networks with one another, potentially
combining well-scoring sub-networks; andreproduction,
which promotes the best networks to the next generation. We
mutate candidate networks by introducing a single change to
a link in each network (addition, deletion or reversal). Cross-
over is performed by swapping sets of parents for each node
between two networks. In particular, if we specify a network
as the set of parents for each nodeXi(Pa(Xi)), two candidate
networksi andj can be denoted{Pai(X1), . . . , Pai(Xn)}
and {Paj (X1), . . . ,Paj (Xn)}, respectively; then a ran-
domly chosen variableXk serves as a swap point, leading
to two networks{Pai(X1), . . . , Pai(Xk),Paj (Xk+1), . . . ,
Paj (Xn)} and {Paj (X1), . . . , Paj (Xk),Pai(Xk+1), . . . ,
Pai(Xn)}. In each iteration of the GA, either a mutation or
a crossover operation is chosen at random. The newly cre-
ated networks are reproduced in the next generation if they
have higher scores than the current networks in the current
generation, replacing the lowest scoring networks.

Influence score. We develop a novelinfluence score as part
of our DBN algorithm in an attempt to predict the sign (+or−)
and relative magnitude of regulatory influences. This score
is computed from the parameter estimates of the conditional
probability valuesθijk = P(xi = k|pa(Xi) = j) for the top
network. The parameterθijk represents the probability that a
nodeXi is in statek when its parent setPa(Xi) is in statej .
Although the valuesθijk are posterior mean estimates of the
conditional probabilities, the actual influence score is not; it
is a summarization of these conditional probability estimates
into a single number to approximate the sign and magnitude
of the interactions between a child variable and each of its
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parents. The conditional probability values are the same as
those used to calculate the BDe and BIC scores. Intuitively,
if there is a high probability for a child to be high when one
parent is high and for the child to be low when that parent is
low, then that parent is presumably an activator. Conversely,
if there is a high probability for a child to be low when one
parent is high and for the child to be high when that parent
is low, then that parent is presumably a repressor. Motivated
by this intuition, we apply a four-step process to compute the
influence score for each link in the top network:

(1) We build a table of cumulative distribution function
(CDF) valuescijk from the valuesθijk by summing
over all lower states ofk:

cijk =
k∑

k′=0

θijk′ ,

wherej andk represent anordered set of states, and
cijk represents the probability that child nodeXi is in
statek or lower when its parent set is in statej . Table 1
is an example of a CDF table for one node with two
parents (denotedP1 andP2).

(2) If a parent is an activator, the CDF should shift in the
positive direction (right) as the parent’s value increases
(when the parent is low, there is high probability for the
child being low; when the parent is high, there is high
probability for the child being high). Conversely, if a
parent is a repressor, the CDF should shift in the negat-
ive direction (left) as the parent’s value increases (when
the parent is low, there is high probability for the child
being high; when the parent is high, there is high prob-
ability for the child being low). Thus, to determine the
sign of regulation from thecijk values, we formulate a
voting system from shifts in the CDF tables. Three types
of vote choices are made: positive, negative or neutral.
If multiple parents are present, we consider each parent
separately, with the other parents fixed in all possible
instantiations. For example, in Table 1, we considerP1
with P2 fixed at value 0 (rowsj = 0, 1 and 2), thenP2
fixed at value 1 (rowsj = 3, 4 and 5), and so forth. Then
for each correspondingj andk, if all cijk ≤ ci(j−1)k

(CDF shift positive), then we consider parentP1 to
possibly have a positive regulatory sign and increase the
positive vote tally by one; however, if allcijk ≥ ci(j−1)k

(CDF shift negative), we increase the negative vote tally
by one; otherwise we increase the neutral vote tally by
one. We perform this voting for each parent with the oth-
ers in all fixed instantiations. In the example of Table 1,
there would be three votes per parent.

(3) We then designate the sign of regulation based on the
total vote tally for each parent. If all votes are in the
positive, or positive and neutral categories, we desig-
nate the sign of regulation to be positive (+); vice versa

Table 1. An example of a CDF table for a nodei with two parents labeled
P1 andP2

Parent Parents CDFs
configurationj (P2,P1) k = 0 k = 1 k = 2

j = 0 (0, 0) Ci00 Ci01 Ci02

j = 1 (0, 1) Ci10 Ci11 Ci12

j = 2 (0, 2) Ci20 Ci21 Ci22

j = 3 (1, 0) Ci30 Ci31 Ci32

j = 4 (1, 1) Ci40 Ci41 Ci42

j = 5 (1, 2) Ci50 Ci51 Ci52

j = 6 (2, 0) Ci60 Ci61 Ci62

j = 7 (2, 1) Ci70 Ci71 Ci72

j = 8 (2, 2) Ci80 Ci81 Ci82

Expression levels are discretized into three levels (0, 1 and 2). Thecijk values in the
table are used to calculate influence scores fromP1 andP2 to nodei.

for negative sign (−). If votes exist in both the positive
and negative categories, the sign is indeterminate and
the influence score is set to 0.

(4) For links with a positive or negative sign after Step 3, we
calculate the relative magnitude of the influence. The
magnitude of the influence score is calculated from the
difference betweencijk andci(j−1)k for all j : the larger
the difference, presumably the stronger the magnitude
of the influence. To avoid distortions from the number
of categories used for discretization, we only consider
the difference betweencij ′k andcij ′′k, wherej ′ andj ′′
are the states where the parent is at its lowest and highest
values, respectively, with other parents at a fixed value.
For instance, in the example of Table 1 whenP2 is fixed
at 0, forP1,j ′ = 0,j ′′ = 2, andk = 0, 1 and 2. If the
link has a positive sign after Step 3, then each positive
vote increases the magnitude by (cij ′k−cij ′′k). If the link
has a negative sign, then each negative vote decreases
the magnitude by (cij ′k − cij ′′k). The magnitude of the
influence score is not changed by neutral votes. Finally,
the magnitude is divided by the total number of votes
to scale the resultant score into the range from−1 to 1.
The more positive the influence score is, the stronger the
activation; the more negative, the stronger the repres-
sion. When the influence score is near 0, it is difficult
to infer the type of regulation.

2.3 Data collection and processing
Discretization. Before being passed to our DBN inference
algorithm, the continuous data values we collect need to
be discretized. In this study, we discretize the expression
levels generated by GeneSim into different numbers of cat-
egories (with equal bin sizes) to determine if finer or coarser
discretization improves recovery accuracy.

Sampling interval. We evaluate several different sampling
intervals to determine the interval at which the inference
algorithm recovers networks most accurately.
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Fig. 2. Cartoon depiction of relative relationships of a target gene.
The solid node is the target gene. P denotes a parent node, G denotes
a grandparent, C denotes a child, U denotes an uncle and S denotes
a sibling.

Quantity of data. We collect various numbers of sampled
data points (25–5000) from GeneSim in order to analyze how
different quantities of data affect the recovery performance.
We compare the accuracy of our recovered networks across
these different numbers of data points. The lowest quant-
ities collected, 25–100 data points, represent biologically
realistic quantities of data in the context of gene expression
experiments.

Data interpolation. We test the effects of data interpolation
on network recovery when only small quantities of sampled
data are available. By interpolating the data, we are effectively
adding an assumption to the data about the smoothness of
the curves connecting any two sampled data points. While
more complex strategies could be considered, we only apply
linear interpolation here. For some experiments, we lengthen
the sampling interval to allow room for interpolating points
between samples.

2.4 Network recovery quantification
Classification of links. Based on their existence and non-
existence in the recovered network and the true underlying
network, we classified the recovered links into four categor-
ies: true positive (TP, a link that exists in both networks),
true negative (TN, a link that does not exist in either net-
work), false positive (FP, a link that exists only in the
recovered network) and false negative (FN, a link that exists
only in the true network). To evaluate the accuracy of a
recovered network, we use two measures defined as fol-
lows: (1) recall= TP/(TP+ FN), the percentage of links in
the true network that also exist in the recovered network; and
(2) imprecision= FP/(FP+ TP), the percentage of links in the
recovered network that do not exist in the true network.

Sub-classification of false positive links. Some false pos-
itives are more informative than others, in that they link genes
that are not in a direct parent–child relationship but are still
nearby in the pathway. Thus, we categorize false positives
as being either from relatives (informative) or from strangers
(uninformative). The most informative false positive links of
a node are from its grandparents, since they are upstream in
the pathway and only one step removed from the true par-
ent; other relatives are siblings, uncles and children (Fig. 2);
strangers consist of all nodes that are not relatives.

Fig. 3. Example of recovered networks for the underlying structures
shown in Fig. 1 with 2000 data points and the BDe scoring metric.
For network 1, one link (from node 9 to 12) is missing. For network 2,
one link (from node 8 to 0) is missing. Numbers next to links specify
computed influence scores, which correlate roughly with regulation
strengths.

Fig. 4. Evaluating (a) the scoring metric, (b) discretization and (c)
the sampling interval. Error bars, standard error of the mean (SEM).
Asterisks, indicate the basic configuration (BDe scoring metric, 2000
data points, 3-category discretization and sampling interval of 5) that
was varied along individual dimensions to produce the three panels
(a), (b) and (c).

3 RESULTS
3.1 Advancing the DBN algorithm
Bayesian scoring metrics. To compare the two scoring met-
rics, for each of the 100 datasets from 10 networks described in
Section 2.1, we use both 2000 and 100 data points sampled at
an interval of five, a three-category discretization and greedy
search with random restarts. With 2000 data points, we find
that our DBN inference algorithm performs well, recover-
ing most (85–100%) of the links in the networks (Figs. 3
and 4a). However the BDe scoring metric outperforms the
BIC, having higher recall (Fig. 4a). With only 100 data
points, BDe recovers some information while BIC finds no
links at all (Fig. 4a). These results underscore the fact that
the BIC scoring metric over-penalizes complexity relative to
the BDe with small quantities of data (Heckerman, 1996).
As we are especially interested in using microarray data in
limited quantities to recover networks of molecular inter-
actions, the BDe scoring metric is used in the remaining
experiments.

Search heuristics. We find that all three search methods—
greedy search with random restarts, simulated annealing and
genetic algorithm—return nearly identical networks in our
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Fig. 5. Recovery results with different quantities of data. (a) Recall (squares) and imprecision (circles) for different quantities of data and
effect of removing links with influence scores<0.001 (open symbols). Bar graph shows percentage lost of false positive (light grey) and true
positive (dark grey) links from removing links with influence scores<0.001. (b) Percentage of false positive links from strangers (black bars
on the left for each quantity of data) versus relatives (grandparents, siblings, uncles or children; stacked bars on the right for each quantity of
data). Each set of bars sums to 100% of the false positives found for each quantity of data. Open circles represent the imprecision as in (a).
The ‘+interpolate’ indicates increased effective quantity of data due to interpolation, using a sampling interval of 15 and interpolation of two
points in between. (c) Effect of quantity of data and the number of parents on the percentage recall. Error bars, SEM.

tests, each with high recall and low imprecision when allowed
to run long enough (as seen in Fig. 3). However, each method
requires a different amount of time to find the top network.
Using a Dell PC with a 2.26 GHz CPU and 1 GB RAM,
greedy search with random restarts is fastest (minutes), sim-
ulated annealing is second (tens of minutes) and the genetic
algorithm is slowest (hours). Owing to the longer running
times of simulated annealing and the genetic algorithm, these
were tested on only three datasets. To save time, greedy search
with random restarts is used in the remaining experiments.

3.2 Advancing data collection and processing
Discretization. We compare DBN inference algorithm per-
formance when each of the 100 datasets of 2000 sampled
data points is discretized into two, three or four categories.
Only when the data are discretized into three categories does
the algorithm find nearly the same regulatory network as the
true network (Fig. 4b). For two-category discretization, the
network has high imprecision (Fig. 4b). We believe this is
attributable to loss of information due to the overly coarse
discretization. For four-category discretization, the network
has lower recall (Fig. 4b), due to difficulty in recovering links
to nodes with multiple parents (data not shown). We believe
this occurs because the finer discretization spreads the data
across larger numbers of states for conditional probability val-
ues, making it more difficult to find dependencies between
nodes (especially with multiple parents). Three-category
discretization is thus used in the remaining experiments.

Sampling interval. Previously, Smithet al. (2003), using
another simulated system and different network topologies,
showed that there is an optimal range of sampling intervals
for DBN inference algorithms. As a result, we seek to locate
a sampling interval in the optimal range with our simulated
system and network topologies. Using 100 datasets of 2000
data points sampled at a variety of different intervals, we find
that the DBN recovers a more accurate network when the
simulation is sampled at an interval of five (Fig. 4c); sampling

at an interval of one yields lower recall and higher impreci-
sion (Fig. 4c); sampling at an interval of 10 yields higher
imprecision (Fig. 4c). We conclude that the sampling interval
of five is within the optimal range.

Quantity of data. Since the quantity of data is a critical factor
in the DBN network recovery, we perform a systematic eval-
uation of recovery results with 10 datasets each consisting of
25–5000 data points from each of the 10 simulated networks,
using a sampling interval of five. Across all networks, our
DBN inference algorithm works relatively well in recover-
ing the true network with large quantities of data (2000 and
5000 data points; Fig. 5a, solid squares and circles). As the
size of the dataset decreases (300 and less) the inference
algorithm accuracy also decreases—recall drops and impre-
cision increases (Fig. 5a, solid squares and circles), with the
relative percentages between the two crossing at 100 data
points. Interestingly, when the dataset contains 5000 points,
although the recall is very high (98.3%), the imprecision
(12.2%) is also relatively high, compared with 2000 data
points (Fig. 5a). To better understand the nature of these false
positive links, we classify false positives as either strangers or
one of four types of relatives (Fig. 2). Almost all of the false
positives in the 5000 data point case are from child nodes
back to their parents (Fig. 5b) to form loops. As the quantity
of data decreases, the proportion from strangers (uninformat-
ive) in the false positive links increases, while the proportion
from relatives (informative) decreases, especially from grand-
parents. We additionally evaluate DBN recall performance
according to the number of parents of the child node in the
true networks. There is lower recall of links to children with
more than one parent; this effect is more pronounced with
smaller quantities of data (Fig. 5c).

3.3 Main advances
Influence score. The influence score we compute accurately
reflects the sign of regulation in the simulated networks (com-
pare Figs 1 and 3). Not surprisingly, the magnitudes are
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Fig. 6. Influence score. Average influence scores are shown for links
in one-parent and two-parent cases. Influence scores in the recovered
networks correlate well with the regulation strengths of the true net-
work as there is an increasing linear relationship between the two.
The ‘100+interpolate’ analysis uses a sampling interval of 15 with
interpolation of two points in between. Error bars, SEM.

different from the magnitudes of the regulatory strength in
matrix A of GeneSim. To test whether the magnitude of the
influence score is correlated with the underlying strength of
regulation, we group the true positive links according to reg-
ulatory strengths across the 10 simulated network topologies.
With large quantities of data (2000), the relative magnitudes
of the influence scores in the recovered networks match the
relative regulatory strengths in the true networks for both the
one- and two-parent cases (Fig. 6; too few three-parent cases
exist for proper analysis). However, as the quantity of sampled
data is decreased, there is a decrease in influence score repres-
entation, particularly in the two-parent case. Specifically, with
multiple parents and little data (300 data points or fewer), the
influence score magnitude of one parent is partially obscured
by the magnitude of the other parent. Regardless of the quant-
ity of data, when the influence score indicates a sign for the
interaction (+/−; Fig. 3), it is correct 100% of the time.

An influence score of 0 or very close to 0 means either
that the sign of regulation is difficult to determine, or the
regulation strength is very weak. We hypothesize that this
information might be useful to eliminate false positive links.
To test this hypothesis, we eliminate all links with an influ-
ence score whose magnitude is below 0.001 and find that this
preferentially eliminates false positive links as opposed to true
positive links for datasets with 300, 100 and 50 data points;
with 25 data points, this preference is not as great (Fig. 5a,
open squares and circles, and bar charts).

Data interpolation. We test whether using moderate data
interpolation improves the accuracy of recovered networks in
the context of small quantities of data. We find that simple
linear interpolation has little effect on recall, but dramatic-
ally reduces imprecision when using only 100 (Fig. 7a) or 50
(Fig. 7b) data points.

Imprecision decreases most when a single data point is
interpolated between each pair of real data points. When two
data points are interpolated and the original sampling interval
is 15 or 20, imprecision continues to decrease, but not as

dramatically. However, as more interpolated data are added,
the imprecision changes little, suggesting that the benefit of
interpolation may plateau, as one might expect. Interpolation
with only 25 original data points results in small compar-
able decreases for both imprecision and recall (Fig. 7c). With
these smaller quantities of data (25–100), we note that the
optimal sampling interval without interpolation, which res-
ults in higher recall, shifts from five to more spaced sampling
(Fig. 7, solid symbols).

To determine if interpolation affects the influence score, we
sample 100 data points at an interval of 15, with two data
points interpolated between each. We find that the overall
performance is similar to that without interpolation, except
that interpolation obscures the relationship between the reg-
ulatory strength and the magnitude of the influence score for
links with high regulatory strengths (Fig. 6). This is prob-
ably due to the fact that nodes receiving the largest regulatory
strengths in the simulation tend to reach their maximal or
minimal values more quickly than others, perhaps within the
interval between sampled data. This would occur in a biolo-
gical system when the transcription rates for different genes
are such that they reach their corresponding maximal levels
of expression at different times.

To better understand the effects of interpolation on redu-
cing imprecision, we examine the identity of false positives
in comparison to non-interpolated data. Using 100, 50 and 25
data points, we find that interpolation both reduces the propor-
tion of strangers and increases the proportion of grandparents,
most dramatically in the case of 100 data points (Fig. 5b).
Thus, the reduction in imprecision due to interpolation is
preferentially from strangers, as desired.

4 DISCUSSION
In this study, we evaluate and improve DBN inference
algorithms for recovering networks from simulated biological
systems. We find that the best configuration for evaluating our
DBN inference algorithm is a greedy search method with ran-
dom restarts employing the BDe scoring metric. The greedy
search method works faster because it only allows changes
that improve the score. This might be useful when the number
of nodes in the network is large or processing time is crit-
ical. However, with more complex networks, the search may
become more difficult if the surface of the landscape induced
by the scoring metric is jagged and marked by large numbers
of local maxima. In such cases, the asymptotic correctness of
simulated annealing might overcome the speed advantage of
greedy search (see Harteminket al., 2002). We believe that
the poor performance of the BIC scoring metric in the pres-
ence of small quantities of sampled data is due to the fact that
its penalty for model complexity is accurate only asymptot-
ically and is overly stringent relative to the BDe with finite
quantities of data.
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Fig. 7. Effect of interpolation with (a) 100, (b) 50 and (c) 25 original data points on recall (solid symbols) and imprecision (open symbols).
Values for a sampling interval of five, which did not undergo interpolation, are offset to the left for clarity. Original sampling intervals are
listed in the key at the top of each graph; SEM error bars are not shown, as all were smaller than the symbols being plotted.

We find the level of data discretization to be critical for
network inference. In our simulated networks, three categories
seem to best balance the tradeoff between information loss
when too few categories are used and insufficient data for
estimation when too many categories are used. We also find,
as in Smithet al. (2003), that there is an optimal interval for
sampling data from the system. However, we further find that
the optimal interval varies with the number of data points
sampled. Perhaps with very small datasets, the total time
covered by sampling is small, and may not capture the flow of
interaction through the full length of a pathway. Thus, small
numbers of data points may require larger intervals to increase
total coverage. Optimal sampling intervals are presumably
determined by the internal dynamics of a system; to recover
the most accurate network, educated assumptions about the
system’s dynamics need to be made.

The most critical advances we make are: (1) developing
an influence score to recover more meaningful, more inter-
pretable and more accurate networks; and (2) demonstrating
the value of moderate data interpolation to assist in the recov-
ery of more accurate networks from only small quantities of
data, quantities that are biologically reasonable in the context
of gene expression experiments. Our influence score per-
forms well at predicting both the signs of interactions between
nodes and the relative magnitudes of the regulatory strengths.
Activation and repression interactions are known to be import-
ant in biological systems and we are not aware of previous
methods for identifying these in a discrete Bayesian network.

Our results suggest that imprecision is one of the most signi-
ficant problems for biological applications of DBN inference
algorithms. We find that this concern is somewhat mitigated
by the fact that many false positives are informative in that they
link a node to a relative, if not the correct parent. Neverthe-
less, being able to reduce the overall number of false positives
and shift false positives from strangers to relatives remains a
critical goal in improving the effectiveness of network infer-
ence algorithms. Promisingly, the influence score we develop
is useful in pruning away low-scoring false positive links.
Furthermore, moderate data interpolation with good time cov-
erage further reduces the overall number of false positive links.

Interpolation also improves accuracy by shifting false positive
links from strangers to relatives such as grandparents, which
at least places genes only one gene removed from their direct
regulator. With 25 time points, interpolation leads to small
improvements, presumably because full coverage of the path-
way is not obtained with so little data. In summary, we believe
that interpolation will be a critical component for applying
DBN inference algorithms to gene expression data, where
time course measurements are often limited to less than 100
time points, since an animal usually has to be sacrificed at
each time point. We note that interpolation does not eliminate
the benefits of collecting larger quantities of real data; for any
particular quantity of real data, extensive interpolation seems
to provide no benefit over only moderate interpolation.

Bayesian networks can also be used to analyze continuous
data directly, either with linear or non-linear regression (as in
Imotoet al., 2002). Although it might seem that a continuous
network would be preferred to one that discretizes data, dis-
crete networks have their own advantages. In particular, con-
tinuous models typically assume additive influence of multiple
parent variables on a child, whereas our discrete models can
capture the types of combinatorial relationships among mul-
tiple parents that are commonly observed in gene regulation.
Moreover, discrete networks need not adopt an assumption of
Gaussian noise and are computationally less intensive to learn.
Thus the choice of using a continuous or discrete network is
largely a question of whether the assumptions each makes are
suitable for the domain to which they are being applied.

The question of which search heuristic would be best suited
to a specific BN search problem is an open one. An exact solu-
tion to the problem can be formulated using a dynamic pro-
gramming algorithm (Ottet al., 2004), but since this algorithm
remains exponential in its running time, it is only practical for
small networks of 20–30 genes. Such an algorithm might be
usefully exploited in conjunction with one of the heuristics
tested here to produce more sophisticated heuristics scaling
to large networks with hundreds to thousands of genes.

Our results are useful for designing experiments for later
analysis with DBN inference algorithms in that they suggest
minimum quantities of data that must be collected and provide
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guidance in choosing good sampling intervals in order to
recover networks with a desirable level of accuracy. We
recommend that when designing experiments for use with a
DBN inference algorithm, at least 50–100 real data points
be collected at a sampling interval that matches the expected
dynamics of the system and moderate interpolation (one to
three data points interpolated between every real point) be
performed.

Work remains to be done. Although we reduced false pos-
itives when using limited quantities of data, true positives did
not increase. This is especially the case when a node had more
than one parent (multiple regulators), which is a serious prob-
lem for genetic pathway recovery, as combinatorial regulatory
control is a basic property of genetic pathways. Unfortunately,
this is a limitation of statistical inference methods: the more
complex the relationship to be learned, the more data will be
required to learn it accurately. Since gene expression data are
likely to remain in short supply, it is prudent to not attempt to
recover complex pathways from gene expression data alone.
Multiple types of data, such as transcriptional binding sites
and protein levels, can significantly enhance the ability to
accurately recover regulatory network structures when used
in conjunction with expression data (Harteminket al., 2002).

We also find that with large quantities of data (5000 data
points) the top networks have incorrect links, particularly from
child nodes to parent nodes, that are not there with smaller
quantities of data (2000 data points). This seems to contradict
the fact that BN inference algorithms are statistically consist-
ent and, thus, known to perform better as more data becomes
available (Heckerman, 1996). However, the consistency of
BN inference is based on the assumption that the underlying
system generating the data is a Bayesian network. This is pre-
sumably not true for real biological systems and is not true
for our simulated system. Thus, due to this mismatch between
the BN and the system being studied, more data may actually
result in over-fitting the network to the data, producing false
links between closely related variables. In fact, the BDe score
for the true structures without these spurious links was lower
than the false structures with them. In our experiments, the
influence scores for these spurious links (mean± SE: 0.086±
0.05) are much smaller than those for links with correct ori-
entations (0.427± 0.008), and thus the influence score should
be useful in selecting against these spurious links.

The performance of our inference algorithms depends in
part on how the underlying networks are simulated; some
meaningful biological information is always lost in math-
ematical modeling. However, while we do not claim that
our simulation exactly matches the corresponding biology,
we believe the advances we tested on this simulation are
likely to lead to similar advances when applied to real
biological data.

Our results suggest caution in the interpretation of networks,
even those with a relatively small number of genes, recon-
structed from what are today still considerable quantities of

expression data (between 50 and 100 data points). However,
we must keep in mind that when DBN inference algorithms
are applied to real data, the results are not intended to be 100%
correct or serve as a substitute for gene intervention experi-
ments (e.g. gene manipulation). Rather, the networks found
by DBN algorithms provide a rough but extremely useful
sketch of the underlying biological pathways, generating
hypotheses to be tested and offering significant guidance for
future manipulation experiments.
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