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Abstract I present here a synopsis on a hypothesis that I

derived on the similarities and differences of vocal learning

systems in vocal learning birds for learned song and in

humans for spoken language. This hypothesis states that

vocal learning birds—songbirds, parrots, and humming-

birds—and humans have comparable specialized forebrain

regions that are not found in their close vocal non-learning

relatives. In vocal learning birds, these forebrain regions

appear to be divided into two sub-pathways, a vocal motor

pathway mainly used to produce learned vocalizations and

a pallial–basal–ganglia–thalamic loop mainly used to learn

and modify the vocalizations. I propose that humans have

analogous forebrain pathways within and adjacent to the

motor and pre-motor cortices, respectively, used to produce

and learn speech. Recent advances have supported the

existence of the seven cerebral vocal nuclei in the vocal

learning birds and the proposed brain regions in humans.

The results in birds suggest that the reason why the fore-

brain regions are similar across distantly related vocal

learners is that the vocal pathways may have evolved out of

a pre-existing motor pathway that predates the ancient split

from the common ancestor of birds and mammals.

Although this hypothesis will require the development of

novel technologies to be fully tested, the existing evidence

suggest that there are strong genetic constraints on how

vocal learning neural systems can evolve.
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Introduction

Vocal learning birds, songbirds in particular, have been

extensively used as a model system to study neural

mechanisms of vocal learning as it relates to speech

acquisition in humans (Jarvis 2004a, b). This neurobiology

sub-field began in the 1970s with the first discovery of a

non-human vocal learning system, that of canaries (Serinus

canaria) (Nottebohm et al. 1976). Since then, nearly a

thousand papers have been published on vocal learning

systems in birds (Pubmed and Scirus searches; keywords,

song–system–brain–avian). However, little attempt was

made to link neural systems for vocal learning in birds with

that for spoken language in humans (Doupe and Kuhl

1999). Making such links was hampered by several factors,

including uncertainty on the telencephalic homologies

between birds and mammals, lack of broadly agreed-upon

definitions for song, speech, and language and what makes

language special, and lack of sufficient data and synthesis

on the neural pathways for vocal learning across bird

orders and for speech learning in humans.

Some of these limitations have been overcome in recent

years. First, a revision of the nomenclature and under-

standing of the avian brain has resulted in a consensus view

that birds and mammals have homologous pallidal, striatal,

and pallial subdivisions in their cerebrums, of which the

latter two contain the vocal learning regions (Reiner et al.

2004; Jarvis et al. 2005). However, the pallial subdivision in

mammals, the cortex, is layered in its cellular organization

whereas in birds it is nuclear, which makes comparisons

difficult at the level of one-on-one homologies or analogies.
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Second, a greater understanding of birdsong behavior has

allowed for more informative comparisons with human

speech (Doupe and Kuhl 1999; Hauser et al. 2002; Okanoya

2007), although many open questions still remain. For the

sake of brain comparisons, I simply define ‘song’ in the

vocal learning birds and ‘speech’ in humans as analogous

behaviors, and ‘spoken language’ in humans as synony-

mous with speech. Third, gene expression mapping studies

have led to important discoveries on the vocal neural sys-

tems across vocal learning bird orders (Jarvis et al. 2000)

and brain imaging studies in humans have allowed a more

accurate identification of brain areas for spoken language

(Gracco et al. 2005). Based upon these advances, I derived a

hypothesis on the similarities and differences of brain

pathways for song in vocal learning birds and spoken lan-

guage in humans. Here, I present a synopsis of that

hypothesis, some of the evidence for it, and some new

findings since it was first reported in 2004 (Jarvis 2004a, b).

Vocal learning

Vocal learning is the ability to modify the acoustic and/or

syntactic structure of sounds produced, including imitation

and improvisation. It is distinct from auditory learning,

which is the ability to make associations with sounds heard,

though vocal learning depends upon auditory learning

(Konishi 1965). Vocal learning is one of the most critical

behavioral substrates for spoken human language; with it,

humans have the ability to imitate speech sounds heard

individually and sequentially, and modify them through

auditory feedback. Vocal learning, however, is not synon-

ymous with spoken language, in that spoken language

includes many other features such as grammar and recur-

sion (Hauser et al. 2002). That is, different vocal learning

species imitate and modify sounds to various degrees, with

humans being the most prolific. Despite these differences,

most, if not all, vertebrates are capable of auditory learning,

but few are capable of vocal learning. The latter has found

in three distantly related groups of mammals (humans, bats,

and cetaceans) and three distantly related groups of birds

(parrots, hummingbirds, and songbirds) (Nottebohm 1972;

Janik and Slater 1997). Recent studies have also discovered

evidence for vocal learning in seals (Sanvito et al. 2007) and

elephants (Poole et al. 2005). However, it is only in humans

and the three vocal learning bird groups that the brain

pathways for learned vocalization have been studied.

Vocal learning brain pathways in birds and humans

Only vocal learners, songbirds, parrots, hummingbirds, and

humans, have brain regions in their cerebrums (or

telencephalon) that control vocal behavior (Jurgens 1995;

Jarvis et al. 2000). Non-vocal learners, including non-

human primates and chickens, only have midbrain and

medulla regions that control innate vocalizations (Wild

1997). Each vocal learning bird group contains seven

comparable cerebral vocal brain nuclei: four posterior

nuclei and three anterior nuclei (Fig. 1a–c; abbreviations in

Table 1; Jarvis et al. 2000). These brain nuclei have been

given different names in each bird group because of the

possibility that each evolved their vocal nuclei indepen-

dently of a common ancestor with such nuclei (Striedter

1994; Jarvis et al. 2000). In all three bird groups, the

posterior nuclei form a posterior vocal pathway that pro-

jects from a nidopallial vocal nucleus (HVC, NLC, VLN)

to an arcopallial vocal nucleus (RA, AAC dorsal part, VA),

to midbrain (DM) vocal premotor and medulla (nXIIts)

vocal motor neurons (Fig. 1a–c, black arrows; Striedter

1994; Durand et al. 1997; Vates et al. 1997; Gahr 2000);

nXIIts projects to the muscles of the syrinx, the avian vocal

organ. Vocal non-learning birds do not to have arcopallium

projections to DM or nXIIts (Wild et al. 1997). The ante-

rior nuclei (connectivity examined only in songbirds and

parrots) form an anterior vocal pathway loop, where a

pallial vocal nucleus (MAN, NAO) projects to a striatal

vocal nucleus (Area X, MMSt), the striatal vocal nucleus to

a nucleus of the dorsal thalamus (DLM, DMM), and the

dorsal thalamus back to the pallial vocal nucleus (MAN,

NAO) (Fig. 1a, b, white arrows; Durand et al. 1997; Vates

et al. 1997). The parrot pallial MO vocal nucleus also

projects to the striatal vocal nucleus (MMSt) (Durand et al.

1997). Connectivity of the songbird MO analogue has not

yet been determined.

The major differences among vocal learning birds are in

the connections between the posterior and anterior vocal

pathways (Jarvis and Mello 2000). In songbirds, the pos-

terior pathway sends input to the anterior pathway via HVC

to Area X; the anterior pathway sends output to the pos-

terior pathway via lateral MAN (LMAN) to RA and medial

MAN (MMAN) to HVC (Fig. 1c; Foster and Bottjer 2001).

In contrast, in parrots, the posterior pathway sends input

into the anterior pathway via ventral AAC (AACv, parallel

of songbird RA) to NAO (parallel of songbird MAN) and

MO; the anterior pathway sends output to the posterior

pathway via NAO to NLC (parallel of songbird HVC) and

to AAC (Fig. 1a; Durand et al. 1997).

In humans, imaging and lesions studies have revealed

cortical, striatal, and thalamic regions that are active and

necessary for learning and production of language

(reviewed in Jarvis 2004a, b; and see below). However,

ethical and practical issues prevent connectivity tract-

tracing experiments on humans. Some post-mortem neuro-

degeneration studies have been conducted in humans and

many tract-tracing studies have been performed on
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adjacent non-vocal pathways in vocal non-learning mam-

mals. Based upon these comparisons, it appears that the

avian posterior vocal pathways are similar to mammalian

motor cortico-brainstem pathways, where, in humans, I

propose an analogous posterior vocal pathway consists of

the face motor cortex that projects to nucleus ambiguous

(Am) of the medulla (Fig. 1d; Kuypers 1958a); Am, the

parallel of avian nXIIts, projects to the muscles of the

larynx, the main mammalian vocal organ (Zhang et al.

1995; Jurgens 1998). Non-human primates, like chickens,

do not have such a projection (Kuypers 1958a, b). See

Jarvis (2004b) for a detail description on analogous cell

types.

The avian anterior vocal pathways are similar in con-

nectivity to mammalian cortical-basal ganglia–thalamic–

cortical loops (Bottjer and Johnson 1997; Durand et al.

1997; Jarvis et al. 1998; Perkel and Farries 2000). In this

regard, I proposed that a strip of adjacent premotor cortex

in humans that is required for speech learning and syntax

production makes up the cortical part of a speech loop.

This cortical strip extends from the anterior insula (aINS),

Broca’s area, the anterior dorsal lateral prefrontal cortex

(aDLPFC), the anterior pre-supplementary motor area

(aSMA), to the anterior cingulate (aCC; Fig. 1d). This strip

I argue is analogous to the avian pallial anterior vocal

nuclei (i.e., parrot MO and NAO). As in non-human pri-

mates and in vocal learning birds, I proposed that this

cortical strip projects to the anterior most region of the

striatum (aSt), the anterior striatum to the globus pallidus

(GP), the pallidus to the anterior dorsal thalamus (aT), and

the dorsal thalamus back up to the cortical strip (Fig. 1d),

all regions required for speech learning and syntax

(described below).

Because connections between the posterior and anterior

vocal pathways differ between songbirds and parrots,

comparisons between them and mammals will also differ.

In mammals, layer 5 neurons of motor cortex have axon

collaterals, where one projects into the striatum and

another projects to the medulla and spinal cord (Alexander

and Crutcher 1990; Reiner et al. 2003). This pattern is

different from the songbird where a specific cell type of

HVC, called X-projecting neurons, projects to Area X in

Fig. 1 Proposed comparable vocal and auditory brain areas among

vocal learning birds (a–c) and humans (d). Left hemispheres are

shown, as this is the dominant side for language in humans and for

song in some songbirds. Yellow regions and black arrows indicate

proposed posterior vocal pathways; red regions and white arrows
indicate proposed anterior vocal pathways; dashed lines indicate

connections between the two vocal pathways; blue indicates auditory

regions. For simplification, not all connections are shown. The globus

pallidus in the human brain, also not shown, is presumably part of the

anterior pathway as in non-vocal pathways of mammals. Basal

ganglia, thalamic, and midbrain (for the human brain) regions are

drawn with dashed-line boundaries to indicate that they are deeper in

the brain relative to the anatomical structures above them. The

anatomical boundaries drawn for the proposed human brain regions

involved in vocal and auditory processing should be interpreted

conservatively and for heuristic purposes only. Human brain lesions

and brain imaging studies do not allow one to determine functional

anatomical boundaries with high resolution. Scale bar *7 mm.

Abbreviations are in Table 1. Figure modified from Jarvis (2004b)
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the striatum separately from neurons of RA of the arco-

pallium that project to the medulla (Fig. 1c). This pattern is

also different from the parrot, where AAC of the arcopal-

lium has two anatomically separate neuron populations,

AACd that projects to the medulla and AACv that projects

to anterior pallial vocal nuclei NAO and MO (Fig. 1a;

Durand et al. 1997). Output of mammalian anterior path-

ways are proposed to be the collaterals of layer 3 and upper

layer 5 neurons that project to other cortical regions and the

striatum (Reiner et al. 2003; Jarvis 2004b).

Functions of vocal brain areas in birds and humans

There are some gross similarities in behavioral deficits

following lesions in specific brain areas of vocal learning

birds (experimentally placed) and of humans (due to stroke

or trauma). Lesions to songbird posterior nuclei HVC and

RA (Nottebohm et al. 1976; Simpson and Vicario 1990),

on the left side in canaries, cause deficits similar to those

found after damage to left human face motor cortex, this

being muteness for learned vocalizations, i.e., for speech

(Valenstein 1975; Jurgens et al. 1982; Jurgens 1995).

Lesions to parrot NLC even cause deficits in producing the

correct acoustic structure of learned human speech in

parrots (Lavenex 2000). Lesions to the face motor cortex in

chimpanzees and other non-human primates do not affect

their ability to produce vocalizations (Kuypers 1958b;

Jurgens et al. 1982; Kirzinger and Jurgens 1982). Lesions

to avian nXIIts and DM and mammalian Am and PAG

result in muteness in both vocal learners and non-learners

(Brown 1965; Nottebohm et al. 1976; Seller 1981; Jurgens

1994, 1998; Esposito et al. 1999).

Lesions to songbird MAN cause deficits that are most

similar to those found after damage to anterior parts of the

human premotor cortex, this being disruption of imitation

and/or induction of sequencing problems. In birds and

humans, such lesions do not prevent the ability to produce

learned song or speech. In humans, these deficits are called

verbal aphasias and verbal amusias (Benson and Ardila

1996). Damage to the left side often leads to verbal

aphasias, whereas damage to the right can lead to verbal

amusias (Berman 1981). The deficits in humans, however,

are more complex. Specifically, lesions to songbird LMAN

Table 1 Abbreviations used in the text and in Figs. 1, 2 and 3

Abbreviation Word or phrase Abbreviation Word or phrase

A Arcopallium LMAN Lateral magnocellular nucleus of anterior nidopallium

AAC Central nucleus of the anterior arcopallium M Mesopallium

AACd Central nucleus of the anterior arcopallium, dorsal part MAN Magnocellular nucleus of anterior nidopallium

AACv Central nucleus of the anterior arcopallium, ventral part MLd Mesencephalic lateral dorsal nucleus

Ai Intermediate arcopallium MMAN Medial magnocellular nucleus of anterior nidopallium

ACM Caudal medial arcopallium MMSt Magnocellular nucleus of the anterior striatum

aCC Anterior cingulate cortex MO Oval nucleus of the mesopallium

aINS Anterior insula cortex N Nidopallium

Am Nucleus ambiguous NAO Oval nucleus of the anterior nidopallium

aT Anterior thalamus NCM Caudal medial nidopallium

aSMA Anterior supplementary motor area NDC Caudal dorsal nidopallium

aSt Anterior striatum NIDL Intermediate dorsal lateral nidopallium

Area X Area X of the striatum NIf Interfacial nucleus of the nidopallium

Av Avalanch NLC Central nucleus of the lateral nidopallium

CM Caudal mesopallium nXIIts Tracheosyringeal subdivision of the 12th nucleus

CSt Caudal striatum Ov Nucleus oviodalis

DLM Medial nucleus of dorsolateral thalamus PAG Periaqueductal grey

DM Dorsal medial nucleus of the midbrain St Striatum

DMM Magnocellular nucleus of the dorsomedial thalamus RA Robust nucleus of the arcopallium

DLPFC Dorsal lateral prefrontal cortex VA Vocal nucleus of the arcopallium

FMC Face motor cortex VAM Vocal nucleus of the anterior mesopallium

HVC (A letter based name) VAN Vocal nucleus of the anterior nidopallium

L2 Field L2 VASt Vocal nucleus of the anterior striatum

LAN Lateral nucleus of the anterior nidopallium VLN Vocal nucleus of the lateral nidopallium

LAM Lateral nucleus of the anterior mesopallium VMM Vocal nucleus of the medial mesopallium

VMN Vocal nucleus of the medial nidopallium
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(Bottjer et al. 1984; Nottebohm et al. 1990; Scharff and

Nottebohm 1991; Kao et al. 2005) and to the human insula

and Broca’s (Mohr 1976; Benson and Ardila 1996; Dron-

kers 1996) lead to poor imitation with sparing or even

inducing more stereotyped song or speech. In addition,

lesions to Broca’s and/or DLPFC (Benson and Ardila

1996) lead to poor syntax production in construction of

phonemes into words and words into sentences. Lesions to

DLPFC also result in uncontrolled echolalia imitation,

whereas lesions to aSMA and anterior cingulate result in

spontaneous speech arrest, lack of spontaneous speech,

and/or loss of emotional tone in speech, but with imitation

preserved (Nielsen and Jacobs 1951; Barris et al. 1953;

Rubens 1975; Valenstein 1975; Jonas 1981). Lesions to

songbird MMAN lead to a decreased ability in vocal

learning and some disruption of syntax (Foster and Bottjer

2001).

Lesions to songbird Area X and to the human anterior

striatum do not prevent the ability to produce already

learned speech, but do result in disruption of vocal learning

and disruption of some syntax in birds (Sohrabji et al.

1990; Scharff and Nottebohm 1991; Kobayashi et al. 2001)

or verbal aphasias and amusias in humans (Mohr 1976;

Bechtereva et al. 1979; Leicester 1980; Damasio et al.

1982; Alexander et al. 1987; Cummings 1993; Speedie

et al. 1993; Lieberman 2000). Humans can have a combi-

nation of symptoms (Mohr 1976) perhaps because, as in

non-human mammals, large cortical areas send projections

that converge onto relatively smaller striatal areas (Beiser

et al. 1997). Not many cases have been reported of lesions

to the human globus pallidus leading to aphasias (Strub

1989), but the fact that this can occur suggests some link

with a striatal vocal area in humans. In vocal learning birds,

the pallidal neurons appear to be within the striatal vocal

nucleus (Durand et al. 1997; Farries and Perkel 2002).

Similar to a preliminary report on songbird DLM

(Halsema and Bottjer 1991), damage to anterior portions of

the human thalamus leads to verbal aphasias (Graff-Rad-

ford et al. 1985). In humans, thalamic lesions can lead to

temporary muteness followed by aphasia deficits that are

sometimes greater than after lesions to the anterior striatum

or premotor cortex. This greater deficit may occur perhaps

because there is further convergence of inputs from the

striatum to the globus pallidus and then from the globus

pallidus to the thalamus (Beiser et al. 1997).

Results of lesion studies overlap with brain activation

studies. In vocal learning birds, all seven comparable

cerebral vocal nuclei display vocalizing-driven expression

of egr-1, an immediate early gene (Jarvis and Nottebohm

1997; Jarvis et al. 1998, 2000; Jarvis and Mello 2000);

expression of immediate early genes are responsive to

changes in neural activity. Likewise, premotor neural firing

has been found in several posterior and anterior vocal

nuclei when a bird sings (McCasland 1987; Yu and Mar-

goliash 1996; Hessler and Doupe 1999; Hahnloser et al.

2002). The firing in songbird HVC and RA correlates with

sequencing of syllables and syllable structure, respectively,

whereas firing in Area X and LMAN is much more varied

and, in LMAN, it correlates with song variability. Stimu-

lation with electrical pulses to HVC during singing

temporarily disrupt song output, i.e., song arrest (Vu et al.

1998).

In humans, the face motor cortex is always activated

with speech task (Petersen et al. 1988; Rosen et al. 2000;

Gracco et al. 2005). For the proposed language strip, pro-

duction of verbs and complex sentences can be

accompanied by activation in all or a subregion of this strip

(Fig. 1d) (Petersen et al. 1988; Poeppel 1996; Price et al.

1996; Crosson et al. 1999; Wise et al. 1999; Papathanas-

siou et al. 2000; Rosen et al. 2000; Palmer et al. 2001;

Gracco et al. 2005). Activation in Broca’s, DLPFC, and

aSMA is higher when speech tasks are more complex,

including learning to vocalize new words or sentences,

sequencing words into complex syntax, producing non-

stereotyped sentences, and thinking about speaking (Hinke

et al. 1993; Poeppel 1996; Buckner et al. 1999; Bookhei-

mer et al. 2000). Like vocal nuclei in birds, premotor

speech-related neural activity has been found in Broca’s

area (Fried et al. 1981). Further, low threshold electrical

stimulation to the face motor cortex, Broca’s, or the aSMA

cause speech arrest or generation of phonemes or words

(Jonas 1981; Fried et al. 1991; Ojemann 1991, 2003).

In non-cortical areas, speech production is accompanied

by activation of the anterior striatum and the thalamus

(Wallesch et al. 1985; Klein et al. 1994; Wildgruber et al.

2001; Gracco et al. 2005). Low threshold electrical stim-

ulation to ventral lateral and anterior thalamic nuclei,

particularly in the left hemisphere, leads to word repetition,

speech arrest, speech acceleration, spontaneous speech,

anomia, or verbal aphasia (Johnson and Ojemann 2000).

The globus pallidus can also show activation during

speaking (Wise et al. 1999). In non-human mammals and

in birds, PAG and DM, and Am and nXIIts display pre-

motor vocalizing neural firing (Larson 1991; Larson et al.

1994; Zhang et al. 1995; Dusterhoft et al. 2004) and/or

vocalizing-driven gene expression (Jarvis et al. 1998, 2000;

Jarvis and Mello 2000).

Since this hypothesis was proposed in 2004 (Jarvis

2004a, b), PET brain imaging studies by Brown and col-

leagues on humans revealed that, when humans sing or

speak, activation specifically occurs in all the above-

described brains areas (Brown et al. 2004, 2006, 2007).

Further, they found that song learning in humans is

accompanied by higher activation of the anterior premotor

cortical and striatal regions relative to simply production of

already well-learned songs (Brown et al. 2006). In birds,
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the presence of all seven vocal nuclei had been previously

revealed with only one gene, egr-1. Since then, additional

immediate early genes have been examined, and multiple

genes reveal the seven vocal nuclei (Wada et al. 2006),

where c-fos clearly shows a high contrast of activation

(Fig. 2a, songbird; b, parrot). No other brain areas showed

high levels of activation, indicating that the entire vocal

systems of these species probably have been identified.

Taken together, the lesion and brain activation findings

are consistent with the idea that songbird HVC and RA are

more similar in their functional properties to face motor

cortex than to any other human brain area, and that song-

bird MAN, Area X, and the anterior part of the dorsal

thalamus are more similar in their properties to parts of the

human premotor cortex, anterior striatum, and ventral

lateral/anterior thalamus, respectively. The findings are

consistent with the presence in humans of a posterior-like

vocal motor pathway and an anterior-like vocal premotor

pathway that are similar to the production and learning

pathways of vocal learning birds. A difference between

birds and humans appears to be the greater complexity of

the deficits found after lesions in humans.

The auditory system

An auditory pathway is common among vocal learners and

vocal non-learners (Jarvis 2004b). In brief, birds, reptiles,

and mammals have relatively similar auditory pathways

(Fig. 3) (Webster et al. 1992; Vates et al. 1996; Carr and

Code 2000). The pathway begins with ear hair cells that

synapse onto sensory neurons, which project to cochlea and

lemniscal nuclei of the brainstem, which in turn project to

midbrain and thalamic auditory nuclei. The thalamic nuclei

in turn project to primary auditory cell populations in the

pallium (avian L2, reptile caudal medial pallium, mam-

malian layer 4 of primary auditory cortex). Avian L2 then

projects to other pallial regions and to the caudal striatum

Fig. 2 Singing-driven c-fos mRNA expression in vocal learning

species. a Accumulated c-fos mRNA (white) in adult male Zebra

Finches (Taeniopygia guttata), a songbird, from a silent male and a

male that sang while alone for 30 min. All seven cerebral vocal nuclei

as well as DM of the midbrain show singing-induced gene expression.

MLd shows expression that is due to the bird hearing itself sing.

Figure modified from Wada et al. (2006). b c-fos expression in adult

male Budgerigar (Melopsittacus undulatus), a parrot, vocal nuclei. All

seven cerebral vocal nuclei previously identified with egr-1 show

singing-induced c-fos expression. The AAC vocal nucleus has lower

c-fos expression in Budgerigars than the other vocal nuclei. NCM and

CM show expression that is due to the bird hearing itself sing. In situ

hybridizations of the parrot brain sections were generated by

Dr. Miriam Rivas. Anterior is to the right, dorsal is up. Abbreviations

are in Table 1. Scale bar 2 mm
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(CSt), forming a complex network. Mammalian layer 4

cells project to other layers of primary auditory cortex and

to secondary auditory regions. In reptiles, after reaching the

caudal medial pallium (Smeets and Gonzalez 1994), the

remaining cerebral pathway connectivity is not known.

The source of auditory input into the vocal pathways of

vocal learning birds is unclear. In songbirds, proposed

routes include the HVC shelf into HVC, the RA cup into

RA, Ov or CM into NIf, and from NIf dendrites in L2

(Wild 1994; Fortune and Margoliash 1995; Vates et al.

1996; Mello et al. 1998). However, the location of the

vocal nuclei relative to the auditory regions differs among

vocal learning groups. In songbirds, the posterior vocal

nuclei are embedded in the auditory regions; in hum-

mingbirds, they are situated more laterally, but still

adjacent to the auditory regions; in parrots, they are situ-

ated far laterally and physically separate from the auditory

regions (Fig. 1a–c). At a minimum, the auditory input must

take different routes to enter the posterior vocal nuclei of

each group.

In humans, primary auditory cortex information is pas-

sed to secondary auditory areas, which includes

Wernicke’s area (Fig. 1d). Damage to this area leads to

auditory aphasias, sometimes call fluent aphasia. A patient

can speak well, but produces nonsense highly verbal

speech. One reason for this symptom is that the vocal

pathways may no longer receive feedback from the audi-

tory system. Bilateral damage to primary auditory cortex

and Wernicke’s area also leads to full auditory agnosia, the

inability to consciously recognize any sounds (speech,

musical instruments, natural noises, etc.) (Benson and Ar-

dila 1996). Information from the Wernicke’s area has been

proposed to be passed to Broca’s area through arcuate

fibers in a caudal-rostral direction (Geschwind 1979), but

for many years such a pathway had not been proven.

Recently, this hypothesis was tested in experiments with

stimulation electrodes in patients undergoing surgery,

which revealed a functional bi-directional axon pathway

between Wernicke’s and Broca’s areas (Matsumoto et al.

2004).

No one has tested whether lesions to avian secondary

auditory areas result in fluent song aphasias. Yet, lesions to

songbird NCM and CM result in a significant decline in the

ability to form auditory memories of songs heard (Mac-

Dougall-Shackleton et al. 1998; Gobes and Bolhuis 2007).

It is difficult to ascertain how non-human animals,

including birds, perceive sensory stimuli, and therefore it is

difficult to make comparisons with humans in regard to

perceptual auditory deficits.

Evolution of vocal learning systems from a common

motor pathway

Given that the auditory pathways in avian, mammalian, and

reptilian species are similar, whether not a given species is

a vocal learner, this suggests that the auditory pathway in

vocal learning birds and in humans was inherited from their

common stem-amniote ancestor, thought to have lived

*320 million years ago (Evans 2000). Having a cerebral

auditory pathway would explain why non-human mam-

mals, including dogs, exhibit auditory learning, including

learning to understand the meaning of human speech,

although with less facility than a human. For vocal learning

pathways, because the connections of the anterior and

posterior vocal pathways in vocal learning birds bear some

resemblance to those of non-vocal pathways in both birds

and mammals, pre-existing connectivity could have been a

genetic constraint for the evolution of vocal learning

(Durand et al. 1997; Farries 2001; Lieberman 2002; 2004a,

b). In terms of function, recent results suggest that vocal

nuclei of vocal learning birds are embedded within at least

seven brain areas active during the production of limb and

body movements (Feenders, Leidvogel, Rivas, Zapka,

Horita, Tremere, Hara, Wada, Mouritsen, and Jarvis, sub-

mitted). The same movement-associated brain areas are

also found in vocal learning birds, such as Ring Doves

(Streptopelia risoria). Like the vocal nuclei, their activa-

tion is independent of auditory input and correlates with the

Fig. 3 Comparative and simplified connectivity among auditory

pathways in reptiles, mammals, and birds, placed in order from left
to right of the most recently evolved. The connectivity from CM to

CSt in birds needs verification by retrograde tracing. Abbreviations

are in Table 1. Figure reproduced from (Jarvis 2004b) with

permission
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amount of movement performed. These findings led to a

motor theory for the origin of vocal learning, whereby in

the avian brain a pre-existing motor system in a vocal non-

learner ancestor is proposed to consists of seven brain

regions distributed across mesopallial, nidopallial, arco-

pallial, and striatal brain subdivisions, and separated into

two pathways: an anterior pre-motor pathway that forms a

pallial–basal–ganglia–thalamic–pallial loop and a posterior

motor pathway that sends descending projections to

brainstem and spinal cord pre-motor neurons. Then, a

mutational event or events might have caused descending

projections of avian arcopallium neurons, that normally

synapse onto non-vocal pre-motor neurons, to instead

synapse onto vocal nXIIts motor neurons in vocal learners.

Thereafter, cerebral vocal brain regions could have deve-

loped out of adjacent motor brain regions using the pre-

existing connectivity. Such a mutational event would be

expected to occur in genes that regulate synaptic connec-

tivity of pallial motor neurons to a-motor neurons. This

theory can also be applied to the proposed human posterior

and anterior vocal pathways used for spoken language, as

these regions are either embedded within or adjacent to

motor and pre-motor pathways. Various parts of this

hypothesis can be verified or falsified with connectivity,

lesion, and brain activation experiments on adjacent brain

areas in vocal non-learning birds, brain areas for vocal

learning in other mammalian vocal learners, and gene

manipulation experiments on genes that control pallial to

brainstem neural connectivity in birds and mammals.

Acknowledgment I thank Dr. Miriam Rivas for performing the in

situ hybridizations of the parrot brain sections.
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